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Phase transitions on fractals: I. Quasi-linear lattices 

Yuval Gefent, Amnon Aharonyt and Benoit B MandelbrotS 
f Department of Physics and Astronomy, Tel-Aviv University, Israel 
f IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, USA 

Received 7 September 1982 

Abstract. Magnetic spin models and resistor networks are studied on certain self-similar 
fractal lattices, which are described as ‘quasi-linear’, because they share a significant 
property of the line: finite portions can be isolated from the rest by removal of two points 
(sites). In all cases, there is no long-range order at finite temperature. The transition at 
zero temperature has a discontinuity in the magnetisation, and the associated magnetic 
exponent is equal to the fractal dimensionality, L). When the lattice reduces to a non- 
branching curve the thermal exponent Y - ’  = y is equal to D. When the lattice is a branching 
curve, y is related, respectively, to the dimensionality of the single-channel segments of 
the curve (for the Ising model), or to the exponent describing the resistivity (for models 
with continuous spin symmetry). 

1. Introduction 

In recent years, there has been much interest in physical systems with non-integer 
dimensionalities, coming from two directions. The theory of critical phenomena has 
made much progress using E expansions (Wilson and Fisher 1972, BrCzin and Zinn- 
Justin 1974, Wallace and Zia 1979), which involve formal analytic continuations of 
expressions concerning the Euclidean dimensionality d. These calculations implicitly 
involve an underlying fractional-dimensional space that is always assumed to be 
translationally invariant, although no such space has ever been implemented. An 
important result of these and other studies on translationally invariant systems is the 
concept of universality, which implies that, given the symmetry of the order parameter 
and the range of interactions, a system’s critical properties depend solely on the 
dimensionality d (see e.g. Fisher 1974, Aharony 1974). Unfortunately, the purely 
formal character of the analytic continuation has prevented an actual test of univer- 
sality for non-integer dimensionalities. 

By contrast, fractals (Mandelbrot 1977, 1982) are fully explicitly described 
geometric shapes of fractional dimensionality. They can be scale invariant, but cannot 
be translationally invariant. Many of the self-similar fractals are constructed by 
recursive replacement of segments, triangles, squares, etc by more complex shapes 
called ‘generators’, which are made of smaller segments, triangles, squares, etc. At 
present, fractals are the only explicit geometric shapes, with non-integer dimension- 
alities, which allow the results derived by abstract analytic continuations to be tested. 
Let us also point out that Gefen er a1 (1983) show that a formal translationally invariant 
fractional-dimensional space can be implemented arbitrarily closely by suitable lnw- 
lacunarity fractal lattices. Furthermore, fractals provide useful models for real physical 
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systems, e.g. polymer chains (Mandelbrot 1977, 1982, Havlin and Ben Avraham 
1982) or percolating clusters (Stanley er a f  1976, Mandelbrot 1977, 1978, 1982, 
Stanley 1977, Kirkpatrick 1979, Stauffer 1979, Gefen er a1 1981). 

In Gefen er a1 (1980), we reported on a preliminary study of critical phenomena 
on fractal lattices. We found that these phenomena depend on the fractal dimensional- 
ity, D, but in addition depend on many topological characteristics of the lattices 
including the topological dimensionality Dr, the orders of ramification R, the con- 
nectivity Q and the lacunarity L. The present paper is the first in a series of three, 
which describe in detail our systematic study of the behaviour of spin models and 
resistor networks on various fractal lattices. This paper is devoted to Koch curves 
that we call quasi-linear because they share a significant property of one-dimensional 
chains; finite portions can be isolated from the rest by removal of two points (sites). 
Hence the minimum order of ramification (excluding endpoints) is 2. Paper I1 will 
describe the behaviour of systems sited on Sierpidski gaskets, which were proposed 
as models for the backbone of the infinite cluster at percolation (Gefen er a1 1981, 
Mandelbrot 1982). The gasket’s orders of ramification are greater than 2 but finite. 
One finds no long-range magnetic order at finite temperature, and one may solve the 
models exactly. Paper I11 will contain the analysis on Sierpidski carpets. In that case 
R is infinite, there is a finite transition temperature, and the calculations are 
approximate. 

Several earlier papers also considered critical phenomena on specific geometrical 
systems (e.g. Nelson and Fisher 1975, Dhar 1977, 1978). The present series of papers 
generalises these discussions, with emphasis on the variation of critical properties with 
the various geometrical characteristics. 

The outline of this paper is as follows. Section 2 describes various quasi-linear 
Koch curves and explains the relevant geometric facts. Section 3 contains an analysis 
of physical systems on quasi-linear Koch curves that are non-branching. This includes 
discrete-symmetry models (e.g. Ising models), models with continuous spin symmetry 
(n  > 2) and resistor networks. Scaling and hyperscaling relations for these models are 
also discussed. Section 4 presents an analogous analysis for quasi-linear Koch curves 
that are branching. Section 5 is a short summary. 

2. Geometry 

Many fractals are constructed starting with some given shape called the ‘initiator’ (it 
may be a segment, square, triangle, etc). One then replaces the initiator by suitably 
rescaled copies of a shape called the ‘generator’. This procedure is continued down 
to a ‘microscopic’ length scale, at which it is stopped. The resulting shape is self-similar 
on all the intermediate length scales. In the fractal lattices considered in the present 
series of papers, the generator is identical to the initiator. The basic spins (or resistors) 
are placed on the sites (or bonds) of the smallest scale lattice. 

Some examples of non-branching Koch curves are shown in figure 1.  To achieve 
a self-similar structure we recursively replace each segment by N smaller segments 
of length l / b .  Then the fractal dimensionality D is defined by b D  = N, or 

(2.1) 
Every fractal embedded in d-dimensional Euclidean space satisfies D G d. Therefore, 
if the curve of figure l ( f )  is to be self-avoiding, it must be embedded in a Euclidean 

D = In N/ln b. 
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Figure 1. Two construction stages of non-branching Koch curves. Dotted lines denote 
spin interactions that are not part of the self-similar structure. ( a )  D =In 4/ln 3, (6) 
D =In 3/ln 2, (c) D = In 6/ln 5 ,  (d) D =In S/ln 3, (e) D = In 7/ln 5 ,  (f) D = I n  4/ln 2 = 2 .  

space with d > 2. Note that, instead of counting the lattice segments, it is more natural 
in the case of spin systems to count the number of lattice sites, the end sites being 
counted for 4. However, these numbers coincide,and hence yield the same value of D. 
The topological dimensionality DT (Mandelbrot 1977, 1982) is defined recursively 

as DT =Dk + 1, where Dk is the topological dimensionality of the ‘cutting set’, that 
is, of the set which cuts the lattice into two separate pieces; 0;. can be found recursively 
in the same way. All the lattices examined in this paper, however ramified (see below), 
can be cut at a finite number of points, hence D k  = 0 and DT = 1. This value is also 
characteristic of the standard curves (lines, circles, . .  .), hence our lattices are curves 
from the topological viewpoint. 

An important parameter in our discussion is the order of ramification R. At a 
point P, R measures the smallest number of significant interactions which one must 
cut in order to isolate an arbitrary bounded group of points on the curve, surrounding 
P (Menger 1932, Mandelbrot 1982). The maximum and minimum values of R obey 

(2.2) 
Many curves include a few points of anomalously low order of ramification, such as 
endpoints where R = 1 .  In such c a m ,  equation (2.2) is verified trivially. However, 

R,,, 3 2R,in - 2. 
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it also holds when the exceptional points are neglected. When R,,, -- R,i,, the curve 
is to be called homogeneous. This requires R = 2 or R = 00. Lattices with R = 2 are 
to be called non-branching. When R,,, = 2R,i, - 2 the curve is to be called quasi- 
homogeneous. 

Examples of branching Koch curves are shown in figure 2. These curves are 
quasi-linear but inhomogeneous, in the sense that the order of ramification takes the 
value R = 2 at some but not all points. At the ‘branching’ points one has R > 2 .  

Curves with D 2 2  cannot be drawn in the plane without extensive self-overlap, 
but in many cases can and should be embedded without self-overlap in Euclidean 
spaces with d > D 2 2. 

For inhomogeneous curves, yet another dimensionality can be defined formally. 
While D =logB(k)/log b k  where B ( k )  is the number of segments (‘bonds’) at the 
k th iteration, one can define d as d = log S(k)/log b k ,  where S ( k )  is the number of 

...... * 
Figure 2. Branching Koch curves. Dotted lines denote spin interactions that are not part 
of the self-similar structure. In (c), (d) ,  ( e ) ,  (f), (g) only one construction stage is shown. 
In ( h ) ,  the thin lines denote the first decoration step. Dots denote endpoints, which are 
infinitely close to nodes of the tree, but d o  not actually touch them. We assume that 
physical inter-spin interactions proceed only along the links of the tree. The fractal 
dimensionalities are ( a )  D = In 5/ln 3, (6 )  D =In 4/ln 2 = 2, ( c )  D =In 7/ln 3, ( d )  D = 
In 9/ln 3 = 2, ( e )  D =In 7/ln 3 ,  ~ f )  D = I n  6/ln 3 ,  (9) D =In 10/ln 5, ( h )  D =In 5/ln 5”2 = 
2. 
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sites at the kth iteration (spin degrees of freedom). Fortunately, d is not a separate 
notion, because after many rescaling iterations D approaches D. On the lattice of 
figure 2(a), this assertion is obvious. Indeed, each point has a coordination number 
2 or 3, hence B ( k )  < S ( k )  < 3B(k)/2, which implies d = D. A less obvious situation 
arises for figure 2(6), where (in the limit) there exist points with an infinite order of 
ramification. However, D = 2, and it is easy to evaluate d by observing that 

S ( k  + 1) = S(k)+2B(k),  

S ( k  + 1) = S ( k ) + 2  x 4k. 

(2.3) 

which becomes 

(2.4) 

To solve (2.4), the standard method is to form the generating function, defined as 
m 

g(x)= 1 S ( k ) x k .  
k = l  

(2.5) 

From equations (2.4) and (2.5) we obtain 

[g(x) -S (~ )X] /X  = g(x)  + 8 ~ / ( 1 - 4 ~ ) .  

g ( x ) = 4 [ ( 1 - 2 ~ ) / ( 1 - 4 ~ ) I ~ / ( l - x ) .  (2.7) 

(2.6) 

Substituting S(1) = 4, and manipulating the algebra, we obtain 

Hence 

S ( k ) = $ 4 k ( l + 2 / 4 k ) ,  

and d = 2 = D. The above examples suggest that both branching and non-branching 
Koch curves with any D > 1 can be constructed. 

3. Non-branching quasi-linear Koch curves 

In this section we analyse some physical models placed on non-branching quasi-linear 
Koch curves. In the case of spin models, the spins are put on the lattice sites, and 
are assumed to interact with their nearest neighbours on the ‘microscopic’ scale. In 
the case of resistor networks, the lattice bonds are assumed to possess a microscopic 
resistance r. We start by describing a detailed calculation on the lattice of figure l (a) ,  
and then generalise. 

As noted above, the geometrical structure in figure l ( a )  has the fractal dimensional- 
ity D = In 4/ln 3, because the.length scale is changed by a factor b = 3, and the number 
of new segments is N = 4. In a preliminary step, we restrict the interactions (or 
resistors) to nearest neighbours along the curve, that is, to the segments (ab), (bc), 
(cd) and (de), which form a one-dimensional chain. The only effect of self-similar 
wiggliness is that the number of bonds between two points which are a distance x 
apart along a straight line is not equal to x but to x D  in dimensionless units. Hence, 
one can apply all the known one-dimensional results, with x replaced by x D .  Since 
all nearest-neighbour spin-spin correlations decay exponentially, on the line, we now 
expect them to decay as exp( -xD/t l ) ,  where 51 is the one-dimensional correlation 
length. This result may be rewritten as 

50 = tyD. (3.1) 
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For the Ising model, t l a e Z K ,  where K = J/kT and J is the nearest-neighbour 
exchange. Using t = e-2K as the low temperature scaling field, equation (3.1) may be 
written as 

50 - t-” with v = 1/D. (3.2) 

For continuous spin models, & a K  = t-l, and again v = 1/D. If the bonds represent 
resistors, the resistance scales as x D .  Analogous results are expected for all the 
structures in figure 1. 

The above results are perfectly straightforward. Next, in order to make the problem 
less trivial, we add a microscopic interaction between sites that are not nearest 
neighbours along the curve, but are nearest neighbours in the plane, such as b and 
d, but not a and f, or d and g. We now formulate renormalisation group recursion 
relations for the Ising model, the n-component spin model and resistor networks. 

3.1. Ising model 

Our basic microscopic Hamiltonian has exchange interactions JSiSj, with Si = f 1, 
between (ab), (bc), (cd), (de) and (bd). In the absence of magnetic field, the trace 
over s b ,  S ,  and Sd yields an effective interaction between a and e, 

with 

i = t a n h k  = T ~ ( ~ + T ) / ( ~ + T ~ ) ,  (3.4) 
where T = tanh K. To define a renormalisation group scheme, a renormalised coupling 
K’ corresponding to a larger scale must be defined in such a way that the partition 
function is invariant under this transformation. The renormalised coupling is between 
spins (aj), (ae), (ef), (fi) and also (af). Defining 

xh) = . r 3 ( 1 + ~ ) / ( 1  +T3),  (3.5) 

X(T’) = [X(T)I4. (3.6) 

it is easy to check that T’  = tanh K’ is given by 

The only fixed points are at T = 0 (K = 00) and T = 00 (K = 0). Linearising near T = 0, 
and writing t ’  = bYt with t = exp( - 2K),  yields 

(3.7) 
Thus we have shown that the additional coupling between b and d does not change 
the simple result (3.2). 

We now introduce a small magnetic field. To find the magnetic exponent we take 
T, T’+ 1 (zero temperature). The only contributions to the trace over s b ,  Sc and s d  

will now come from S b  = S ,  = s d  = Sa = Se.  Thus 

-1  v = y = In 4/ln 3 = D. 

= exp(4hSa), 

h ’=4h  

i.e. 
(3.8) 

(3.9) 



Phase transitions on fractals : I 1273 

( h  is measured in units of kBT). There is a factor of $ in front of hS, because the 
field on each spin is divided between the bonds which connect this spin to its neighbours. 
Writing h' = b'h, the magnetic exponent is found to be 

x = In 4/ln 3 = D. (3.10) 

The free energy per spin (in units of kBT) ,  F, is expected to scale as b-D, since 
the number of spins is rescaled by N = b D .  Ignoring the sum over the constants (A 
in equation (3.3)), we expect the general scaling relation 

F(t ,  h )  = b-DF(bDt, b D h ) .  (3.11) 

Eliminating b yields 

N ,  h )  = t f ( h / t ) ,  (3.12) 

and we can now identify all the thermodynamic exponents, e.g. 

ff = 1, P =o,  s=co. (3.13) 

Note that these results coincide with the results on the line (e.g. Nelson and Fisher 
1975), as might be anticipated. 

The transition at T = 0 is of first order, since the magnetisation 'jumps' from zero 
to unity. It is interesting to note that the fixed point at T = 0 has a magnetic eigenvalue 
equal to bD.  The fractal dimensionality D thus replaces the usual dimensionality d, 
expected to appear for a 'discontinuity fixed point' (Nienhuis and Nauenberg 1975, 
Berker and Fisher 1982). Except for the replacement of d by D, we recover all the 
usual modifications of hyperscaling relations at zero-temperature transitions (Baker 
and Bonner 1975). 

3.2. Models with n > 1 

We now replace the Ising interaction by J ( S i  *Si), where Si is an n-component unit 
vector. Denoting by A, (K) the (normalised) nearest-neighbour spin correlation func- 
tion in a linear chain (Stanley 1969), the correlation function between a and e in 
figure l (a )  is easily found to be 

X ( K )  = A'(K)A (K +K~), (3.14) 

where A (K1) = A '(K). The new coupling constant K' is now found through 

X(K') = X@q4. (3.15) 

Note that equations (3.14) and (3.15) also contain equations (3.5) and (3.6), since for 
the Ising case A (K) = tanh K. They easily generalise to any other problem, in which 
the one-dimensional nearest-neighbour correlation function (i.e. the ratio of the two 
largest eigenvalues of the transfer matrix) is known. 

When the temperature is very low and n >1, one has An(K)=l-a/K, with 
a = ( n  - 1)/2 (Stanley 1969). Thus, A (KI) = 1 - 2a/K, i.e. K1 =K/2, and X = 
1 -8a/3K. Finally, equation (3.14) yields K'= K/4. Using t = 1/K and t '=  by?, we 
thus again identify u - l =  y = In 4/ln 3 = D. One similarly recovers x = D, and all the 
other results in equation (3.13). 
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3.3. Resistors 

The bonds in figure l ( a )  (including one between b and d) now represent resistors. 
The net resistance between a and e is 2r 4 ( l / r  + 1/2r)-'  = 8 r / 3 .  The new basic 
resistance r' is now found via 8r ' /3  = 4 ( 8 r / 3 ) ,  i.e. r' = 4r. Writing r' = b'r, we identify 

(3 .16 )  

Again, this agrees with the simple quasi-linear scaling presented in the beginning of 
this section. 

- 
[ = In 4/ln 3 = D. 

3.4. Generalisations 

The procedure used above consisted of two basic steps. We first traced over the sites 
b, c and d, and obtained an effective bond (related to X(K)) between a and e. At 
this stage, the range between i and j (figure l ( a ) )  simply contained b D  = 4  one- 
dimensional bonds. We next introduced the bond between a and f ,  and identified the 
new coupling K' via equation (3 .15) .  It is now easy to convince oneself that the 
generalisation to any other non-branching Koch curve is 

X(K ' )  = X ( K y ,  (3 .17 )  

where N = bD. The function X(K) is expected to be analytic in the small variable t 
(equal to e-2K for n = 1 ,  or to K-' for n > 1 ) .  Writing X(K) = 1 -ut, equation (3 .17 )  
immediately yields 

(3 .18 )  t ' = Nt  = b Dt 

and y = D. 

lower scale. Thus, x = D. The result f = D follows in exactly the same manner. 

expected from their quasi-linear nature. 

It is similarly easy to see that h ' = N h ,  since each spin replaces N spins on the 

We conclude that for all non-branching Koch curves one has y = x  = E =  D, as 

4. Branching quasi-linear Koch curves 

We now turn to branching Koch curves, such as those shown in figure 2 .  Figure 2 ( a )  
differs from figure l ( a )  in that the bond (bd) is now part of the self-similar structure. 
Thus, the new coupling constant K '  is simply given by 

A (K') = X(K) ,  ( 4 . 1 )  
with X(K) given in equation (3 .14 ) .  

4.2. Ising model 

For the king case, A ( K )  = tanh K, so that 

tanh K ' =  tanh ' K  tanh(K +K1) ,  (4 .2 )  
with tanh K I =  tanh2K. At large K, tanh K = 1 - 2f, with t = e-2K, and to leading order 
t' = 2t, i.e. y = In 2/ln 3 .  This result is easily generalisable. Only one-channel links 
will yield factors of tanh K = 1 - 2e-ZK on the right-hand side of ( 4 . 2 ) .  Bonds which 
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couple in parallel yield factors like tanh(K + K I )  = 1 - 2 e-2(KcK1) = 1 + o(e-2K). To 
leading order in e-2K, all the latter factors are equal to unity, implying that the 
corresponding spins are practically parallel to each other. Denoting by N' the number 
of one-channel links, we thus conclude that 

Y-' = y =In N'/ln b, n = 1. (4.3) 
Clearly, y <D = In N/ln b. 

We now add a small magnetic field, at zero temperature. Since the branching 
Koch curves are inhomogeneous, different sites have different coordination numbers. 
One iteration of the renormalisation group will thus generate different magnetic fields 
at different sites. Denoting the magnetic field at a site with q neighbours by h,, we 
shall now have a set of linear recursion relations for the h,'s. In the example of figure 
2 ( a )  we must consider h2 (at sites c, e) and h3 (at sites a, b, d). At zero temperature, 
all the spins are aligned parallel to each other. Dividing the contribution from each 
new bond equally between the spins at its ends, we find 

h = h 2 + ( h  2 + 2 h3), h i  = h 3 + $ ( h z + 2 h 3 ) .  (4.4) 
The eigenvalues of the corresponding 2 x 2  matrix are easily found to be 5 and 1. 
The former is equal to bD, as expected by the general argument near a discontinuity 
fixed point. The latter signals the existence of a 'marginal' variable. After many 
iterations, the fields h2 and h3 will be proportional to their values for the eigenvector 
of the larger eigenvalue, which we find to be h z / h 3  + $. 

We followed the same procedure for all the branched Koch curves in figure 2,  and 
we always find one eigenvalue bD,  whose eigenvector obeys h, = aq. All the other 
eigenvalues are found to be equal to unity. In general, denoting by gA the number 
of generators adjacent to the point A, we have a recursion relation of the form 

4' 

where m, is the number of times that a site with q neighbours appears as an internal 
point on the basic generator. We now write down a similar equation for a point B, 
which is an endpoint of a generator connected to A. Adding these two equations 
results in 

(4.6) 

The eigenvalue N = bD,  with eigenvector h, = aq, results from the identity 

(4.7) 

Notice that in a tree (e.g. figure 2 ( h ) )  there is a single one-channel path between 
any two points, dressed with dangling ends. Hence, y~ = yn,' < D. (In the example 
of figure 2 ( h )  yn=' = Y , , , ~  =log 3/log 45 -- 1.365.) The corresponding magnetic 
exponents are calculated as above. The general rule of having a magnetic eigenvalue 
b D  at a discontinuity fixed point is thus obeyed, with the fractal dimensionality D. 

4 

4.2. Models with n > 1 and resistors 

In the continuous models it is no longer true that spins connected via more than one 
channel are practically parallel to each other. Now one has An(K) = 1 - a / K ,  so that 
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for figure 2(a)  we have A ( K ' )  = X(K) 2: 1 - 8a/3K, or K '  = 318 K ,  i.e. t' = 8/3t. We 
thus find Y-' = y =In (8/3)/ln 3. 

To generalise this result, it is useful to note the analogy between continuous spin 
models at low temperature and resistor networks. The derivation of equation (3.13) 
was based on the fact that the net coupling constant of two bonds which connect the 
same two sites (in parallel) is the sum of the corresponding bonds, ( K  + KI)SiSi. On 
the other hand, the effective coupling constant resulting from decimation over a spin 
which mediates between two sites is found via A (Kea) = A  (K)A ( K 1 ) .  At low tem- 
perature, this implies that K i i  = K - ' + K ; ' .  Thus, inverse coupling constants in 
parallel or in series add up exactly in the same way as resistors (see also Stinchcombe 
1978). Indeed, for figure 2(a)  we immediately find that r' = 8/3r, i.e. 5 = ln(8/3)/ln 3. 

The general result for models with continuous spin symmetry is thus that their 
exponent y is independent of n (for n > l ) ,  and is equal to 5. Note that y n = l  < y n z 1  <D. 
The magnetic exponent x remains as in the Ising case, i.e. x = D. Since the magnetisa- 
tion is discontinuous at T = 0, we again expect p = 0, i.e. 

M(r, h )  =bOm(bYt, b D h ) .  (4.8) 

Integration with respect to h now yields the generalisation of equation (3.11), i.e. 

F(t ,  h )  = b-DF(b't, bDh) .  (4.9) 

These results are consistent with the statement that asymptotically the number of sites 
scales in the same way as the number of bonds. 

The other critical exponents may now be obtained directly from equation (4.9). 
Again, one should be careful in using hyperscaling near T = 0 (Baker and Bonner 
1975). 

The simplest way to perform calculations on lattices containing interactions that 
are not part of the geometrical structure (e.g. the dotted lines in figure 2(g)) is the 
following. We perform the first renormalisation group iteration, in which we regard 
the lattice as if it was composed of all the interactions, including the 'dotted links'. 
After this step we obtain a renormalised branching curve, for which all the interactions 
are part of the lattice. Then we proceed as in § 4, using relations like (4.1). 

5. Summary and discussion 

In the present paper we studied a family of quasi-linear self-similar lattices, called 
Koch curves. These have minimum order of ramification equal to 1 (if they contain 
dangling ends, cf figure 2 ( h ) ) ,  or 2. We distinguished between branching and non- 
branching Koch curves, the latter being homogeneously ramified. The finiteness of 
the order of ramification enabled us to perform exact calculations on these lattices, 
and was also responsible for the vanishing of the critical temperature for spins put 
on these lattices. 

We showed that the fractal dimensionality D replaces the Euclidean dimensionality 
d in various scaling relations. This is true for any self-similar lattice (provided that 
the thermodynamic limit exists). Similar relations were recently derived for the 
percolation problem (Gefen et al 1982). For non-branching Koch curves [ = y = x = 
D for both n = 1 and n > 1. However, for the branching Koch curves we find that 
y I < y , , l = f < D  and that the exponents f and y I  do not depend only on D. In 
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addition, they depend on geometrical details of the orders of ramification at the various 
sites. 

We also considered the critical behaviour due to magnetic field, and found that 
the exponent x is indeed equal to the fractal dimensionality (D) of the system, as 
expected for a discontinuity fixed point (Nienhuis and Nauenberg 1975). 

We have verified that the recursion relations for n >1 systems near T=O are 
equivalent to the problem of resistor networks on the corresponding lattices. The 
fact that these two problems are related was discussed by Josh eta1 (1977), Stinchcombe 
(1978). 

We compared three quantities that scale under the renormalisation grougiterations. 
These are the number of sites ( - b D ) ,  the effective resistance R ( - b i )  and the 
one-channel links N ’ ( - b Y 1 ) .  These quantities define three effective lengths in the 
problem, that are related, respectively, to the total mass, the correlation length of 
n > 1 systems (or the resistance problem) and the king correlation length. The latter 
is also relevant to other magnetic systems with a discrete symmetry of the spin (e.g. 
Potts models, percolation, etc), whose analysis is similar to that of Ising systems. The 
existence of three diverging lengths in the percolation problem was recognised by 
Lubensky (1976) and Coniglio (1981), who used a quasi-linear picture to describe 
the backbone at percolation. However, the relevance of (possibly randomised) Koch 
curves to the percolation problem is not at all obvious (Gefen et a1 1981). They 
probably become physically relevant for systems at high dimensionalities. 

Again we emphasise that the fractals’ being exactly solvable makes them a con- 
venient tool to study generalisations of dimensionality and the effects of various 
geometrical and topological factors on critical behaviour. 
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